Экспоненциальное распределение. Показательный закон распределения Плотность распределения показательного закона

Экспоненциальное распределение. Показательный закон распределения Плотность распределения показательного закона

Подписаться
Вступай в сообщество «podgotovichka.ru»!
ВКонтакте:

Случайная величина имеет равномерное распределение , если вероятность того, что она принимает любое значение в интервале, ограниченном минимальным числом а и максимальным числом b , постоянна. Поскольку график плотности этого распределения имеет вид прямоугольника, равномерное распределение иногда называют прямоугольным (см. панель Б на рис. 1).

Рис. 1. Три непрерывных распределения

Скачать заметку в формате или , примеры в формате

Функция плотности равномерного распределения задается формулой:

где а - минимальное значение переменной X , b - максимальное значение переменной X .

Математическое ожидание равномерного распределения:

(2) μ = (а + b ) / 2

Дисперсия равномерного распределения:

(3) σ 2 = (b a ) 2 / 12

Стандартное отклонение равномерного распределения:

Чаще всего равномерное распределение используется для выбора случайных чисел. При осуществлении простого случайного выбора предполагается, что каждое число извлекается из генеральной совокупности, равномерно распределенной в интервале от 0 до 1. Вычислим вероятность извлечь случайное число, превышающее 0,1 и меньше 0,3.

График функции плотности равномерного распределения для а = 0 и b = 1 изображен на рис. 2. Общая площадь прямоугольника, ограниченного этой функцией, равна единице. Следовательно, этот график удовлетворяет требованию, согласно которому, площадь фигуры, ограниченной графиком плотности любого распределения, должна равняться единице. Площадь прямоугольника, заключенная между числами 0,1 и 0,3, равна произведению длин его сторон, т.е. 0,2 х 1 = 0,2. Итак, Р(0,1 < X < 0,3) = 0,2 х 1 = 0,2.

Рис. 2. График плотности равномерного распределения; вычисление вероятности Р(0,1 < X < 0,3) для равномерного распределения при а = 0 и b = 1

Математическое ожидание, дисперсия и стандартное отклонение равномерного распределения при а = 0 и b = 1 вычисляются следующим образом:

Рассмотрим пример. Предположим, что моменты отказов устройства для контроля за чистотой воздуха равномерно распределены в течение суток.

  1. В некий день светлое время суток наступает в 5:55 и заканчиваться в 19:38. Какова вероятность того, что отказ оборудования устройства произойдет в течение светлого времени суток?
  2. Допустим, что с 22:00 до 5:00 устройство переходит в режим пониженного энергопотребления. Какова вероятность того, что отказ произойдет в указанный период времени?
  3. Предположим, что в состав устройства входит процессор, каждый час осуществляющий проверку работоспособности оборудования. Какова вероятность того, что отказ будет обнаружен не позднее, чем через 10 мин?
  4. Предположим, что в состав устройства входит процессор, каждый час осуществляющий проверку работоспособности оборудования. Какова вероятность того, что отказ будет обнаружен не раньше, чем через 40 мин?

Решение. 1. Поскольку в условии задачи сказано, что моменты отказов устройства равномерно распределены в течение суток, вероятность отказа в светлое время суток – есть доля этого времени суток. Р (отказа в светлое время суток) = 19:38 – 5:55 = 57,2%. Вычисления см. приложенный Excel-файл. Если представить разность окончания и начала светлого времени суток в процентном формате, то получим ответ – 57,2%. Хитрость заключается в том, что в Excel сутки – это единица, один час – 1/24, таким образом интервал времени меньше суток будет составлять процентную часть этих суток.

2. Р (отказа с 22:00 до 5:00) = 2:99 + 5:00 = 29,2%.

3. Р (обнаружения отказа не позднее, чем через 10 мин) = 10 / 60 = 16,7%

4. Р (обнаружения отказа не раньше, чем через 40 мин) = (60 – 40) / 60 = 33,3%

Экспоненциальное распределение

Экспоненциальное распределение является непрерывным, имеет положительную асимметрию и изменяется от нуля до плюс бесконечности (см. панель В на рис. 1). Экспоненциальное распределение оказывается весьма полезным в деловых приложениях, особенно при моделировании производства и систем массового обслуживания. Оно широко используется в теории расписаний (очередей) для моделирования промежутков времени между двумя запросами, которые могут представлять собой приход клиента в банк или ресторан быстрого обслуживания, поступление пациента в больницу, а также посещение Web-сайта.

Экспоненциальное распределение зависит только от одного параметра, который обозначается буквой λ и представляет собой среднее количество запросов, поступающих в систему за единицу времени. Величина 1/λ равна среднему промежутку времени, прошедшего между двумя последовательными запросами. Например, если в систему в среднем поступает 4 запроса в минуту, т.е. λ = 4, то среднее время, прошедшее между двумя последовательными запросами, равно 1/λ = 0,25 мин, или 15 с. Вероятность того, что следующий запрос поступит раньше, чем через X единиц времени, определяется по формуле (5).

(5) Р (время поступления запроса < X ) = 1 – e –λ x

где е - основание натурального логарифма, равное 2,71828, λ – среднее количество запросов, поступающих в систему за единицу времени, X – значение непрерывной величины, 0 < X < ∞.

Проиллюстрируем применение экспоненциального распределения примером 2. Допустим, что в отделение банка приходят 20 клиентов в час. Предположим, что в банк уже пришел один клиент. Какова вероятность того, что следующий клиент придет в течение 6 мин? В данном случае λ = 20, Х= 0,1 (6 мин = 0,1 ч). Используя формулу (5), получаем:

Р(время прихода второго клиента < 0,1) = 1 – е –20*0,1 = 0,8647

Таким образом, вероятность, что следующий клиент придет в течение 6 мин, равна 86,47%. Экспоненциальное распределение можно вычислить с помощью функции Excel =ЭКСП.РАСП() (рис. 3).

Рис. 3. Расчет экспоненциального распределения с помощью функции =ЭКСП.РАСП()

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 379–383

Показательным называют распределение непрерывной случайной величины Х которое описывается следующей дифференциальной функцией

Экспоненциальное распределение для непрерывных случайных величин является аналогом распределения Пуассона для дискретных случайных величин и имеет следующий вид.

вероятность попадания случайной величины Х на интервал (α;β)

Следует отметить, что время безотказной работы удовлетворяется именно показательному закону, а поэтому это понятие часто используется в понятии надежности.

Нормальный закон распределения (закон Гаусса)

Нормальным называется распределение случайной величины Х если ф-ция плотности распределения

Полученное выражение через элементарные функции не может быть выражено, такая функция так называемый интеграл вероятности для которой составлены таблицы, чаще всего в качестве такой функции используют

Часто по условию задачи необходимо определить вероятность попадания случайной величины Х на участок симметричный математическому ожиданию.

Правило трех сигм это правило часто используется для подтверждения или отбрасывания гипотезы о нормальном распределении случайной величины.

Мат. статистика

Выборочная сумма:

.

Выборочное среднее:

.

Выборочная дисперсия:

, где т i – частота.

Выборочное СКО:

.

Эмпирическая функция распределения:

F * (x)=P(X

F * (x)= .

Точечные оценки:

Несмещенная оценка генеральной средней (мат.ожидания ):

, х i – варианта выборки, m i – частота варианты х i , - объем выборки.

Смещенная оценка генеральной дисперсии – выборочная дисперсия:

, так как

.

Несмещенной оценкой генеральной дисперсии служит «исправленная дисперсия»:

. При п<30.

Коэффициент вариации:

.

Центральный момент к -го порядка:

.

Начальный момент к -го порядка:

.

Ассиметрия : , т 3 =

Эксцесс : , где т 4 =

Групповая средняя : .

Общая средняя: , где .

Общая дисперсия: .

Интервальные оценки:

Доверительный интервал для мат.ожидания а нормально распределенного количества признака Х :

.

Критерий согласия Пирсона:

Если число наблюдений очень велико, то закон распределения СВ не зависит от того, какому закону подчинена генеральная совокупность. Он приближается к распределению с к степенями свободы, а сам критерий называется критерием согласия Пирсона:

, где к – количество интервалов сгруппированного ряда, т i >0,05n .

Количество степеней свободы : r=k-p-1 , где к – количество интервалов, р – количество параметров закона.



Уровень значимости α :

α=0,05 и α=0,01.

Если , то Н 0 принимается , т.е. предполагаемый закон распределения отвечает эмпирическим данным. При этом мы ошибаемся в 5-ти случаях из 100, принимая возможно ошибочную гипотезу (ошибка 2-го рода).

Если , то Н 0 отвергается , т.е. предполагаемый закон не отвечает эмпирическим данным. При этом мы ошибаемся в 1-ом случае из 100, отбрасывая правильную гипотезу (ошибка 1-го рода).

Если , то имеем неопределенность и можно использовать др. критерии.


Корреляция

- сумма частот в i -ом столбце;

- сумма частот в к -ой строке;

- число пар (х i ; y k) .

Условное среднее : .

Теоретические уравнения линий регрессии :

.

Расчет числовых характеристик:

Показатель тесноты корреляционной связи – эмпирическое корреляционное отношение:

, где .

.

Свойства:

1. 0≤η≤1 .

2. если η =1, то у(х) – связь функциональная.

3. η =0, то связи нет.

4. η≥ .

5. если η = , то имеет место точная линейная корреляционная зависимость.

6. чем ближе η к 0, тем корреляционная связь слабее, чем ближе к 1, тем корреляционная связь сильнее и в пределе она превращается в функциональную зависимость.

Коэффициент корреляции:

.

Проверка значимости параметров корреляционной зависимости:

1. Проверка существенности линейной корреляционной связи (значимости регрессии) .

При больших объемах выборки коэф.корреляции подчиняется нормальному закону. При этом .

2. Проверка значимости регрессии :

.

Если τ р >2,58, то с уверенностью 99% можно утверждать, что корреляционная зависимость существенна (регрессия значима). Т.е. корреляционная связь существует не только в выборке, но и во всей генеральной совокупности.

τ р <1,96, то с уверенностью 95% можно утверждать, что корреляционная зависимость не явл. существенной, т.е. она характерна только для данной выборки и может не существовать в генеральной совокупности.



1,96<τ р < 2,58 – несущественная корреляционная зависимость.

3. Проверка линейности выбранной модели (проверка адекватности):

.

Р=99% (α=0,01): t=2,58

Р=95% (α=0,05): t=1,96

Если величина η у/х удовлетворяет этому неравенству, то выбранная модель адекватна, она соответствует эмпирическим данным.

Критерий Фишера:

, п – число наблюдений, к – число интервалов по Х.

При уровнях значимости:

α=0,05 и α=0,01: F 0,05 (k-1;n-1); F 0,01 (k-1;n-k).

Если F y / x

Проверка значимости регрессии:

, по табл. F 0,01 (1;n-2), F 0,05 (1;n-2).

Если F R >F 0,01 , то регрессия значима, если F R

Адекватность модели по Фишеру:

.

F 0,01 (k-2;n-k), F 0,05 (k-2;n-k).

Если F A >F 0,01 , то модель неадекватна, если F A

Критерий Романовского:

, где r – число ступеней свободы. Если ρ<3 , то расхождение между теоретическими и эмпирическими распределениями нужно считать незначительными.

Критерий согласованности Калмагорова:

- наибольшая по абсолютной величине разность между накопленными частотами эмпирического и теоретического распределения.

к – количество интервалов.

По таблице находим соответствующее значение вероятности Р(λ). Если Р(λ)<0,05, то расхождение между распределениями существенно, оно не может быть вызвано случайными причинами. Чем ближе эта вероятность к 1, тем лучше теоретическое распределение согласовывается с эмпирическим.


где λ – постоянная положительная величина.

Из выражения (3.1), следует, чтопоказательное распределение определяется одним параметром λ.

Эта особенность показательного распределения указывает на его преимущество по сравнению с распределениями , зависящими от боль­шего числа параметров. Обычно параметры неизвестны и приходится находить их оценки (приближенные значе­ния) разумеется, проще оценить один параметр, чем два или три и т. д . Примером непрерывной случайной вели­чины, распределенной по показательному закону , может служить время между появлениями двух последователь­ных событий простейшего потока.

Найдем функцию распределения показательного закона .

Итак

Графики плотности и функции распределения показа­тельного закона изображены на рис. 3.1.


Учитывая, что получим:

Значения функции можно находить по таблице.

Числовые характеристики показательного распределения

Пусть непрерывная случайная величина Χ рас­пределена по показательному закону

Найдем математическое ожидание , используя формулу её вычисления для непрерывной случайной величины:


Следовательно:

Найдем среднее квадратическое отклонение , для чего извлечем квадратный корень из дисперсии:

Сравнивая (3.4), (3.5) и (3.6), видно, что

т. е. математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой.

Показательное распределение широко применяетсяв различных приложениях финансовых и технических задач, например, в теории надежности.



4. Распределение «хи-квадрат» и распределение Стьюдента.

4.1 Распределение «хи-квадрат» (- распределение)

Пусть Χ i (ί = 1, 2, ..., n)-нормальные незави­симые случайные величины , причем математическое ожи­даниекаждой из нихравно нулю , а среднее квадратическое отклонение - единице .

Тогдасумма квадратов этих величин

распределена по закону с степенями свободы , если же эти величины связаны одним линейным соотношением, например , то число степеней свободы

Распределение хи-квадрат нашло широкое применение в математической статистике.

Плотность этого распределения


где - гамма-функция, в частности .

Отсюда видно, чтораспределение хи-квадрат опре­деляется одним параметром - числом степеней свободы k.

С увеличением числа степеней свободыраспределение хи-квадрат медленно приближается к нормальному.

Хи-квадрат распределение получается, если в законе распределения Эрланга принять λ = ½ и k = n /2 – 1.

Математическое ожидание и дисперсия случайной величины, имеющей хи-квадрат распределение, определяются простыми формулами, которые приведем без вывода:

Из формулы следует, что при хи-квадрат распределение совпадает с экспоненциальным распределением при λ = ½ .

Интегральная функция распределения при хи-квадрат распределенииопределяетсячерез специальные неполные табулированные гамма-функции

На рис.4.1. приведены графики плотности вероятности и функции распределения случайной величины, имеющей хи-квадрат распределениепри n = 4, 6, 10.

Рис.4.1. а )Графики плотности вероятности при хи-квадрат распределении


Рис.4.1. б)Графики функции распределения при хи-квадрат распределении

4.2 Распределение Стьюдента

Пусть Z – нормальная случайная величина, причём

а V – независимая от Z величина, которая распределена по закону хи-квадрат с k степенями свободы.Тогда величина:


имеет распределение, которое называют t -распределением или распределением Стьюдента (псевдоним английского статистика В. Госсета),

с k = n - 1 степенями свободы (n - объём статистической выборки при решении задач статистки).

Итак , отношение нормированной нормальной величинык квадратному корню из независимой случайной вели­чины, распределенной по закону «хи квадрат» с k степе­нями свободы , деленной на k, распределено по закону Стьюдента с k степенями свободы.

Плотность распределения Стьюдента:

Определение. Показательным (экспоненциальным) называется распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью

где l - положительное число.

Найдем закон распределения.

Графики функции распределения и плотности распределения:

f(x) F(x)

Найдем математическое ожидание случайной величины, подчиненной показательному распределению.

Результат получен с использованием того факта, что

Для нахождения дисперсии найдем величину М(Х 2).

Дважды интегрируя по частям, аналогично рассмотренному случаю, получим:

Тогда

Итого: Видно, что в случае показательного распределения математическое ожидание и среднее квадратическое отклонение равны.

Также легко определить и вероятность попадания случайной величины, подчиненной показательному закону распределения, в заданный интервал.

Показательное распределение широко используется в теории надежности .

Допустим , некоторое устройство начинает работать в момент времени t 0 =0 , а через какое - то время t происходит отказ устройства.

Обозначим Т непрерывную случайную величину - длительность безотказной работы устройства.

Таким образом , функция распределения F(t) = P(T определяет вероятность отказа за время длительностью t .

Вероятность противоположного события (безотказная работа в течение времени t ) равна R(t) = P(T>t) = 1 - F(t).

Определение. Функцией надежности R(t) называют функцию, определяющую вероятность безотказной работы устройства в течение времени t .

Часто на практике длительность безотказной работы подчиняется показательному закону распределению.

Вообще говоря , если рассматривать новое устройство, то вероятность отказа в начале его функционирования будет больше, затем количество отказов снизится и будет некоторое время иметь практически одно и то же значение. Затем (когда устройство выработает свой ресурс) количество отказов будет возрастать.

Другими словами , можно сказать, что функционирование устройства на протяжении всего существования (в смысле количества отказов) можно описать комбинацией двух показательных законов (в начале и конце функционирования) и равномерного закона распределения.

Функция надежности для какого- либо устройства при показательном законе распределения равна:

Данное соотношение называют показательным законом надежности .

Важным свойством , позволяющим значительно упростить решение задач теории надежности, является то, что вероятность безотказной работы устройства на интервале времени t не зависит от времени предшествующей работы до начала рассматриваемого интервала, а зависит только от длительности времени t .

Таким образом , безотказная работа устройства зависит только от интенсивности отказов l и не зависит от безотказной работы устройства в прошлом.


Так как подобным свойством обладает только показательный закон распределения, то этот факт позволяет определить, является ли закон распределения случайной величины показательным или нет.

2.8 Распределение «Хи-квадрат»

Пусть X i (i=1,2,…,n) - нормальные независимые случайные величины, причем математическое ожидание каждой из них равно нулю, а среднее квадратическое отклонение - единице. Тогда сумма квадратов этих величин

распределена по закону («Хи-квадрат») с k=n степенями свободы; если же эти величины связаны одним линейным соотношением, например , то число степеней свободы k=n-1.

Плотность этого распределения

где -Гамма-функция; в частности,

Отсюда видно , что распределение «Хи-квадрат» определяется одним параметром - числом степеней свободы k. С увеличением числа степеней свободы распределение медленно приближается к нормальному.

2.9 Распределение Стьюдента

Пусть Z -нормальная случайная величина, причем M(Z)=0, s(Z)=1, а V- независимая от Z величина, которая распределена по закону с k степенями свободы. Тогда величина

имеет распределение, которое называют t- распределением или распределением Стьюдента, k степенями свободы. Итак отношение нормированной нормальной величины к квадратному корню из независимой случайной величины, распределенной по закону

«Хи-квадрат» с k степенями свободы , деленной на k, деленной на k распределено по закону Стьюдента с k степенями свободы. . С увеличением числа степеней свободы распределение медленно приближается к нормальному.

2.9 Нормальный закон распределения

Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Нормальный закон распределения также называется законом Гаусса .

Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать , что параметры и , входящие в плотность распределения являются соответственно математическим ожиданием и средним квадратическим отклонением случайной величины Х.

Найдем функцию распределения F(x) .

График плотности нормального распределения называется нормальной кривой или кривой Гаусса .

Нормальная кривая обладает следующими свойствами:

1 ) Функция определена на всей числовой оси.

2 ) При всех х функция распределения принимает только положительные значения.

3 ) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента х , значение функции стремится к нулю.

4 ) Найдем экстремум функции.

Т.к. при y’ > 0 при x < m и y’ < 0 при x > m , то в точке х = т функция имеет максимум, равный .

5 ) Функция является симметричной относительно прямой х = а , т.к. разность

(х - а ) входит в функцию плотности распределения в квадрате.

6 ) Для нахождения точек перегиба графика найдем вторую производную функции плотности.

При x = m + s и x = m - s вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.

Экспоненциальное (показательное) распределение

Рассмотрим семейство распределений, широко используемое при принятии управленческих решений и других прикладных исследованиях - семейство экспоненциальных распределений. Проанализируем вероятностную!! модель, приводящую к таким распределениям. Для этого рассмотрим «поток событий», т.е. последовательность событий, происходящих одно за другим в какие-то моменты времени. Примерами могут служить: время безотказной работы компьютерной системы, интервал между последовательными поступлениями автомобилей к стон-линии перекрестка, поток обращений клиентов в отделение банка; поток покупателей, обращающихся за товарами и услугами; поток вызовов на телефонной станции; поток отказов оборудования в технологической цепочке и т.д.

В теории потоков событий справедлива теорема суммировании потоков событий. Суммарный поток состоит из большого количества независимых частных потоков, ни один из которых не оказывает преобладающего влияния на суммарный поток. Так, поток вызовов, поступающих на телефонную станцию, состоит из большого числа независимых потоков вызовов, исходящих от отдельных абонентов. В случае, когда характеристики потоков не зависят от времени, суммарный поток полностью описывается одним числом X - интенсивностью потока. Для суммарного потока функция распределения случайной величины X - длины промежутка времени между последовательными событиями имеет следующий вид:

Это распределение называется экспоненциальным (показательным) распределением. В данную функцию иногда вводят параметр сдвига с.

Экспоненциальное распределение имеет только один параметр, который и определяет его характеристики. Плотность распределения имеет следующий вид:

где X - постоянная положительная величина.

График функции /(х) представлен на рис. 9.12.

Рис. 9.12.

На рис. 9.13 представлен график плотности экспоненциального распределения при разных параметрах X.

Экспоненциальное распределение характеризует распределение времени между независимыми событиям, появляющимися с постоянной интенсивностью. Экспоненциальный закон характерен для распределения случайных величин, изменение которых обусловлено влиянием какого-то доминирующего фактора. В теории надежности это распределение описывает распределение внезапных отказов, так как последние являются редкими событиями. Экспоненциальное распределение служит также для описания


Рис. 9.13. Плотность экспоненциального распределения при разных параметрах X

наработки сложных систем, прошедших период приработки, и для описания времени безотказной работы системы с большим числом последовательно соединенных элементов, каждый из которых не оказывает большого влияния на отказ системы.

Теоретические частоты для экспоненциального закона распределения определяют по формуле

где N - объем совокупности; 1г к - длина интервала; е - основание натурального логарифма; X - условные отклонения середин классов:

Рассмотрим выравнивание эмпирического распределения (табл. 9.4) по экспоненциальному закону.

Таблица 9.4

Эмпирические частоты для выравнивания распределения по экспоненциальному закону

Имеем N = 160; Ь к = 41; х = 54,59. Расчет величин условных отклонений середин классов, вспомогательных величин е _1 и теоретических частот произведен в табл. 9.5.

Таблица 95

Выравнивание эмпирических частот по экспоненциальному закону

Эмпирические данные, х

Эмпирическая частота, т

Теоретические частоты

Эмпирические и теоретические частоты экспоненциального распределения изобразим графически на рис. 9.14.

Показательное распределение представляет собой частный случай распределения Вейбулла - Гнеденко (соответствующий значению параметра формы b = 1).

← Вернуться

×
Вступай в сообщество «podgotovichka.ru»!
ВКонтакте:
Я уже подписан на сообщество «podgotovichka.ru»